Partielo | Créer ta fiche de révision en ligne rapidement

polynomials identies

all identities portfolio

(i) (a + b)2 = a2 + 2ab + b2

(ii) (a– b)2 = a2– 2ab + b2

(iii) a2– b2 = (a + b) (a – b)

(iv) a3 + b3 = (a + b) (a2– ab + b2)

(v) a3– b3 = (a – b) (a2 + ab + b2)

(vi) (a + b)3 = a3 + b3 + 3ab (a + b)

(vii) (a– b)3 = a3– b3– 3ab (a – b)

(viii) a3 + b3 + c3– 3abc = (a + b + c) (a2 + b2 + c2– ab – bc – ac)


Coordinate Geometry - Formulas, Coordinate Plane, Examples

PORTFOLIO COMPELETE>---------------------------------------------------------

To remember :

THE IDENTITIES ARE THE MOST IMPORTANT

  • surface and volume formulas
  • 3d shapes

Cube

  • Surface Area: 6L² where L is the dimension of its side.


  • Volume: L3 where L is the dimension of its side.


Cuboid

  • Surface Area: 2(LB+ BH+ LH).


  • Lateral Surface Area: 2(L + B) H (where L= Length, B= Breadth and H= Height)


  • Volume: LBH


Right Circular Cylinder

  • Lateral Surface Area: 2
  • πRH
  • πRH.
  • Total Surface Area:  
  • 2πR(H+R)
  • 2πR(H+R) 
  • Volume:
  • πR
  • 2
  • H
  • πR2H (where R= Radius, H= Height).


Right Circular Cone

  • Lateral Surface Area:
  • πRL
  • πRL
  • Total Surface Area:
  • ρπR(L+R)
  • ρπR(L+R)
  • Volume:
  • 2
  • 3

  • πR
  • 2
  • H
  • 23πR2H (where R= Radius, L=Slant Height and H= Height)

Sphere

  • Surface Area:
  • 4πR
  • 2
  • 4πR2
  • Volume: 
  • 4
  • 3

  • πR
  • 3
  • 43πR3(where R= Radius)


Hemisphere

  • Curved Surface Area:
  • 2πR
  • 2
  • 2πR2
  • Total Surface Area:
  • 3πR
  • 2
  • 3πR2
  • Volume:

  • 2
  • 3

  • πR
  • 3
  • 23πR3 (where R= Radius).


square root sprial

Ex 1.2, 4 - Construct a square root spiral - Ex 1.2


polynomials identies

all identities portfolio

(i) (a + b)2 = a2 + 2ab + b2

(ii) (a– b)2 = a2– 2ab + b2

(iii) a2– b2 = (a + b) (a – b)

(iv) a3 + b3 = (a + b) (a2– ab + b2)

(v) a3– b3 = (a – b) (a2 + ab + b2)

(vi) (a + b)3 = a3 + b3 + 3ab (a + b)

(vii) (a– b)3 = a3– b3– 3ab (a – b)

(viii) a3 + b3 + c3– 3abc = (a + b + c) (a2 + b2 + c2– ab – bc – ac)


Coordinate Geometry - Formulas, Coordinate Plane, Examples

PORTFOLIO COMPELETE>---------------------------------------------------------

To remember :

THE IDENTITIES ARE THE MOST IMPORTANT

  • surface and volume formulas
  • 3d shapes

Cube

  • Surface Area: 6L² where L is the dimension of its side.


  • Volume: L3 where L is the dimension of its side.


Cuboid

  • Surface Area: 2(LB+ BH+ LH).


  • Lateral Surface Area: 2(L + B) H (where L= Length, B= Breadth and H= Height)


  • Volume: LBH


Right Circular Cylinder

  • Lateral Surface Area: 2
  • πRH
  • πRH.
  • Total Surface Area:  
  • 2πR(H+R)
  • 2πR(H+R) 
  • Volume:
  • πR
  • 2
  • H
  • πR2H (where R= Radius, H= Height).


Right Circular Cone

  • Lateral Surface Area:
  • πRL
  • πRL
  • Total Surface Area:
  • ρπR(L+R)
  • ρπR(L+R)
  • Volume:
  • 2
  • 3

  • πR
  • 2
  • H
  • 23πR2H (where R= Radius, L=Slant Height and H= Height)

Sphere

  • Surface Area:
  • 4πR
  • 2
  • 4πR2
  • Volume: 
  • 4
  • 3

  • πR
  • 3
  • 43πR3(where R= Radius)


Hemisphere

  • Curved Surface Area:
  • 2πR
  • 2
  • 2πR2
  • Total Surface Area:
  • 3πR
  • 2
  • 3πR2
  • Volume:

  • 2
  • 3

  • πR
  • 3
  • 23πR3 (where R= Radius).


square root sprial

Ex 1.2, 4 - Construct a square root spiral - Ex 1.2

Retour

Actions

Actions